На главную
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Турниры Архимеда

Задача 1. Двузначные числа. Найдите все двузначные числа, каждое из которых на 6 меньше суммы квадратов своих цифр.

Задача 2. Большая шахматная доска. Можно ли расставить на шахматной доске 2000х2000 крестики и нолики (в каждой клетке ровно один символ!), чтобы ни на одной диагонали, вертикали или горизонтали нельзя было встретить три крестика или три нолика подряд?

Задача 3. Известная задача. Петя и Витя ехали вниз по эскалатору. Посередине эскалатора Витя сорвал с Пети шапку и бросил ее на встречный эскалатор. Петя побежал вверх, чтобы затем спустится вниз и вернуть шапку. Витя побежал вниз, чтобы затем подняться вверх и успеть раньше Пети. Кто успеет раньше, если скорости ребят постоянны и равны?

Задача 4. Не производя вычислений. В равенстве 10910=23673**67459211723401 замените звездочки цифрами так, чтобы получилось верное равенство. Решите задачу, не умножая число 109 само на себя.

Задача 5. Экспертиза. Среди 15 монет, выглядящих одинаково, имеется одна фальшивая, отличающаяся по весу от всех остальных и одна заведомо настоящая «стандартная» (лежит отдельно). Можно ли за 3 взвешивания на чашечных весах без гирь обнаружить фальшивую монету?

Задача 6. На олимпиаде были даны три задачи А, B и С. 25 школьников решили хотя бы одну задачу. Среди школьников, не решивших задачу А, решивших B, в два раза больше, чем решивших С. Школьников, решивших только задачу А, на одного больше, чем остальных школьников, решивших задачу А. Сколько школьников решили только задачу B, если среди школьников, решивших только одну задачу, половина не решила задачу А?

Задача 7. Счастливые билеты. Будем считать, что автобусный билет имеет шестизначный номер, а счастливый билет это тот, у которого сумма первых трех цифр равна сумме трех остальных. Сколько всего счастливых билетов?

Задача 8. Гнезда в патроне электронной лампы равномерно расположены по окружности и занумерованы числами от 1 до 100. Можно ли так занумеровать штырьки в лампе (числами от 1 до 100), чтобы при любом включении лампы в патрон хотя бы один из штырьков обязательно попадал в гнездо со своим номером?

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Все права защищены ©, http://arhimedes.org/, контактный e-mail: info@arhimedes.org